## DETECTION OF GENETIC VARIABILITY AMONG SUGARCANE SOMACLONES USING SSR MARKER

\*Rebina Ferdous, \*\*Md. Amzad Hossain, \*\*\*Md Abul Kalam Azad, \*\*\*\*Mst Kamrun Nahar \*,\*\*\* Dept. of Biotech. and Genetic Engineering, Islamic University, Kushtia, Bangladesh \*\*CSO, Bangladesh Sugarcane Research Institute, Bangladesh \*\*\*\*Institute of Nano Electronic Engineering (INEE), University Malaysia Perlis, Malaysia rebinaf@yahoo.com

### ABSTRACT

The experiment was conducted for detection of genetic variability among ten sugarcane somaclones including TC2-10(16), TC3-10(16), TC5-10(16), TC8-10(16), TC10-10(16), TC1-10(20) PEG, TC3-10(20) PEG, TC7-10(20) PEG, TC16-10(20) PEG and TC23-10(20) PEG along with their parent varieties (Isd 16 and Isd 20) using two Microsatellite (SSR) markers UGSM 565 and UGSM 567. The sizes of amplified bands in ten sugarcane somaclones of two varieties Isd 16 and Isd 20 ranged from 80 to 650bp. Two SSR markers amplified a total of 58 bands. SSR markers UGSM 565 and UGSM 567 amplified 25 and 33 number of bands, respectively. The highest number of bands (2.75) per variety was amplified from UGSM 567 marker and lowest number of bands (2.08) per variety were recorded from UGSM 565 marker. Genetic diversity or polymorphic information content (PIC) for UGSM 565 was 0.64 and for UGSM 567 it was 0.69 with a mean of 0.67 for all loci across ten somaclones and their parent varieties evaluated. The highest linkage distance 6.0 and lowest linkage distance 1.0 were recorded among ten somaclones and two parent varieties. Genetic relationships based on UGSM 565 among ten somaclones along with their two parent varieties at the average distance of 4.95 showed two major clusters. The somaclones TC23-10(20) PEG and TC10-10(16) were separated from other investigated somaclones and varieties. On the other hand, based on UGSM 567 genetic relationships among ten somaclones along with their two parent varieties at the average distance of 5.5 showed two major clusters and somaclones TC23-10(20) PEG and TC10-10(16) were separated from other somaclones and their parent varieries respectively. The results revealed that two SSR markers were able to detect/identify and classify ten sugarcane somaclones along with their parent varieties indicating genetic differences among somaclones and their parent varieties.

*Keywords:* Saccharum officinarum, SSR markers, Genetic variability

## INTRODUCTION

Sugarcane (Saccharum spp.) is a genetically complex crop of major economic importance in tropical and sub-tropical countries (Khan et al, 2004). Traditional tools for sugarcane breeders to identify different varieties rely on anatomical and morphological characters (Skinner, 1972). The morphological characters like stalk wax, leaf sheath wax, leaf sheath margin, leaf sheath hair (pubescence), dewlap appearance, stalk color, auricle size and color, other distinguishing and characteristics, are generally used by sugarcane breeders varietv development in (LaBorde, Legendre, Bischoff, Gravois, & Robert, 2008). For development of improved varieties, genotypic studies of sugarcane is required. To ensure correct variety identity and its genetic pedigree, a procedure for accurate identification using molecular data is urgently needed (Y.-B. Pan, Cordeiro, Richards, & Henry, 2003; Y Pan, Miller, Schnell, Richard Jr, & Wei, 2003; YB Pan, Scheffler, & Richard Jr. 2007). Rapid advances in the field of molecular biology and its allied sciences made the use of molecular markers а

routine practice providing plant breeders a precise tool in analyzing genetic diversity plant improvement for (Andersen & Lübberstedt, The 2003). molecular markers are of many types e.g. RFLPs, TRAPs, RAPDs, SNPs, simple sequence repeats (SSRs) and AFLPs. Simple sequence repeats (SSR) markers reveal polymorphisms due to variation lengths of in microsatellites specific at individual loci. Microsatellites or simple sequence repeats (SSRs) are stretches of DNA, consisting of tandemly repeated short units of 1-6 base pairs in length. They are ubiquitous in eukaryotic genomes and can be PCR analyzed through (Polymorphic Chain Reactions) technology.

In Bangladesh, germplasm characterization is mainly based on agronomic and morphological traits. So far, varieties have all been released in country on the basis of agronomic and morphological traits. Obtaining accurate estimates of genetic diversity among germplasm resources might helpful in sugarcane be breeding. Knowledge of genetic diversity and relationships among breeding genome, their polymorphic co-dominance nature, and materials might have а significant impact on crop improvement. Recently, aenetic diversitv and characterization molecular study have been initiated using RAPD markers. The SSR marker is important particularly for variety identification by DNA fingerprinting, varietv selection for breeding hybridization purpose, evaluation and conservation of their diverse gene pool. Considering the fact, this investigation has been conducted for detection of aenetic variability of sugarcane somaclones using microsatellite markers with the objectives of (1) detection variability genetic of of sugarcane somaclones along with their parent varieties using microsatellite markers; (2) DNA fingerprinting of sugarcane somaclones and their parent; and (3) determining genetic diversity relationship and among somaclones based on cluster analysis.

### MATERIALS AND METHOD

The experiment was carried out in the Biotechnology Division of Bangladesh Sugarcane Research Institute (BSRI), Ishurdi. Pabna. Bangladesh. The following materials and methods were considered to conduct the experiment:

# Plant materials and sample collection

Five somaclones of BSRI released sugarcane of variety [TC2-10(16), lsd 16 TC3-10(16). TC5-10(16), TC8-10(16) and TC10-10(16)] and five somaclones of variety Isd [TC1-10(20)PEG, 20 TC3-10(20)PEG, TC7-10(20)PEG, TC16-10(20)PEG and TC16-10(20)PEG], developed by DMSO (Dimethyl sulfoxide) along with PEG (Polyethylene Glycol), were used as plant materials for DNA isolation. The fresh tops from the 8 field month old grown sugarcane were collected and outerleaf sheaths were removed leaving inner spindle get meristem to meristem cylinder. Then cylinder (spindle base) was cut into small pieces (about 1.0cm) with sterile scissors and the required weight (0.2 g) was taken using a fine balance.

## **DNA** isolation

А modified method of (Aljanabi et al., 1999) was used to isolate total genomic DNA. Cut pieces of meristem cylinder (about 5mm long with 3mm dia) weighing 0.2g were taken in a small mortar (dia 6.5cm and 3.5cm depth) and homogenized with pestle in 800µL of extraction buffer (200mM Tris HCl, pH 8.0; 50mM EDTA.H2O, pH 8.0; 2.2M NaCl; 2% CTAB; 0.06% Sodium Sulfite) until finely shredded within 40-50 second. The grinded sample was taken into а 2mL eppendorf tube to which was added 150µL of each 5% SDS, 10% PVP, 20% CTAB. lt was mixed well and incubated at 65°C in a water bath for 40 minutes. During incubation 3-4 times inversion was done. After incubation samples were cooled at room temperature and equal volume of Phenol Chloroform Isoamyl Alcohol (25:24:1) was added mixed well by inversion and centrifuged at 10.000rpm at room temperature for 30 minutes. Then aqueous phase (about 800µL) was recovered and transferred to a fresh ice-cold 2mL eppendorf tube and an

equal volume of ice-cold isopropanol was added followed by 150µL of 5M NaCl. The samples were incubated at -20°C for at least 1h and centrifuged at 10.000rpm at room temperature for 20 minutes. The upper layer of solution was discarded carefully by adjustable usina an micropipette and 70% icecold ethanol about 2.5 times of the solution was added. It was centrifuged again at 10,000 rpm at room temperature for 10 minutes. After pellet formation the solution was discarded from the tube carefully so that the DNA pellet remains constant and undisturbed. Then 70% ethanol was added to the slant of the tube. The ethanol was discarded from the tube carefully so that the DNA pellet remained constant and undisturbed. DNA pellet was dried for at least 30 minutes putting the tubes upside down on a filter paper. DNA pellet was re-suspended in 50µL of TE buffer (10mM Tris HCl, pH 8.0; 1mM EDTA.H<sub>2</sub>O pH 8.0) and stored at -20°C for lateral use.

### **Primers used**

selected Two sugarcane microsatellite primers (markers) developed by International Sugarcane Microsatellites Consortium. NSW. Australia were used to amplify Simple Sequence Repeats of genomic DNA in six sugarcane varieties. The primers were UGSM 565 and UGSM 567 (Table 1). The primers were evaluated on the basis of intensity/resolution of bands, repeatability of markers and consistency within individual and potential to differentiate varieties (polymorphism).

# PCR amplification and electrophoresis

PCR amplification was done in an oil-free thermal cycler (Genius, Techne, Cambridge Limited) following PCR profile of table-2 94°C for 3 minutes (initial denaturation) followed by 35 cycles of 40 seconds dennaturation at 94°C, 30 seconds annealing at 55°C and elongation or 72°C for extention at 1 minutes. After last cycle, a final step of 7 minutes at 72°C added to allow the was complete extention of all amplified fragments. After completion of cycling program, reactions were held at 4°C. PCR reactions were performed on each DNA sample in a 10µL reaction mixture containing 1.0µL of 10x Ampli Tag polymerase buffer (PCR buffer), 0.6µL of 25mM MgCl2, 1.0µL of 2.5mM DNTPs, 2.5µL each of Primer Forward and Reverse from 2.5µM stock, 0.2µL of Ampli 5U/µl Tag DNA polymerase (Bangalore Genei Pvt. Ltd., India), 2.0µL of 25ng/µL genomic DNA and a suitable amount (0.2µL) of sterile deionized water. After amplification, 2µl loading dye was added to the PCR amplified product and stored at 4°C for separation using Agarose Gel Electrophoresis. In each well, 8.0µl of PCR amplified product of each DNA sample for each primers was loaded in 1% agarose gel. Electrophoresis was performed at 120V for 1.10 hours. The DNA ladder for primer pairs was run along the sides of the reactions. After electrophoresis. the DNA bands were observed and the data was analyzed. After electrophoresis, the gel was taken out carefully from the electrophoresis chamber and placed in Gel Documentation System DBT-2000LS) (uvitec for scoring of DNA bands. The DNA was observed as band and photographed using alpha view-Fluor Cham FC2 software Gel Documentation system.

## SSR data analysis

SSR data were analyzed for Percentage of Polymorphic Loci (P), Average Number of Alleles per Locus (A). Average Number of Alleles per Polymorphic Loci (Ap), Number Average of Genotypes per Locus (G), and Gene Diversity-Polymorphic Information (PIC). Content Cluster analysis and Dendrograms were constructed following electrophoresis, and the size of amplification products was estimated bv comparing themigration of each amplified fragment with that of a known size fragments of molecular weight marker: 80bp DNA ladder. All distinct bands or fragments (SSR marker) were thereby given identification number according to their position on gel and scored visually on the basis of their presence (1) or absence (0), separately for each individual variety and primer. The each scores obtained using all primers in SSR analysis were then combined to create a single data matrix. Linkage

distances were computed from frequencies of polymorphic markers to estimate genetic diversity and relationship between six sugarcane varieties using the Unweighted Pair-Group Method of Arithmetic Means (UPGMA) (Sneath & Sokal, using 1973) computer program "Statistica".

## RESULTS AND DISCUSSION

DNA fingerprinting of ten sugarcane somaclones of two varieties was performed. For purpose, two this SSR primers were selected after test from initially selected five primers because these two primers were able to amplify bands in all used sugarcane somaclones and parent varieties. Initially five primers for selected the were investigation developed by International Sugarcane Microsatellite Consortium. Molecular characterization and genetic diversity analysis of 81 sugarcane varieties were also studied by Muyco (R.R, 2002) using six SSR primers. He selected these six primers from the list of 259 primers developed by the International Sugarcane Microsatellite Consortium based on observation. From this primer list and according to the selection of Muyco, the two primers (UGSM 565 and UGSM 567) were selected for this investigation.

SSR primers with corresponding bands scored, their size range, number of polymorphic bands, percentage of polymorphic bands and number of bands per variety in two sugarcane varieties and their respective somaclones are presented in table-2. The size of amplified bands in ten sugarcane somaclones and two parent varieties ranged from 80 to 650. The SSR primer pair UGSM 565 revealed the band sizes ranging from 80bp to 650bp while the primer pair UGSM 567 showed a range from 350bp to 650bp. This perhaps due to the was differences of the samples used in this investigation. The result was in conformity with the findings of Yang et al. (Yang, Maroof, Xu, Zhang, & Biyashev, 1994) who pointed out that the range in allele sizes can be influenced by different samples. The two SSR primer pairs amplified a total number of 58 bands from sugarcane ten somaclones and two parent varieties of sugarcane. Representative Electrophoregrams according to primer pairs UGSM 565 and UGSM 567 were shown in Figures 1 and 2. respectively For two primer pairs, the total number of bands produced varied from 25 to 33 (Table 2). The primer pair UGSM 567 amplified the highest number of bands (33) followed by UGSM 565 (25). Taylor and Cordeiro (Corderio et al., 2000) showed that the SSR primer pairs UGSM 567 and UGSM 565 produced identical fingerprints which partially supports the present

findings. The highest number

of bands (2.75) per variety

was amplified from the primer

pair UGSM 567 followed by

UGSM 565 (2.08). Due to the

sugarcane, the SSR markers

nature

of

vbiolgylog

revealed multiple bands per locus. At South Africa Sugar Association Experiment Station (SASEX), Natal, application of 35 sugarcane microsatellites identified from 1 to 18 alleles per marker across four varieties. In Mauritius Sugar Industry Research Institute (MSIRI), Mauritius, number of alleles generated per primer pair ranged from 9 to 20 using 5 primer pairs on 96 sugarcane cultivars (Jannoo, Forget, & Dookun, 2001). At Center for Plant Conservation Genetics (CPCG). Southern Cross University (SCU) in NSW, Australia 3 to 12 alleles per primer pair were recorded across five sugarcane genotypes using 91 primer pairs (Corderio et al., 2000). These results supports present findings. In this investigation, highest (16%) percentage was recorded from the primer pair UGSM 565 which produced the lowest number of total bands (25) whereas lowest percentage (6.06%)of polymorphism was recorded from the primer pair UGSM which produced 567 the highest number of total bands (33). This variation in band formation and polymorphism may be due to variation of primer pairs. The two SSR UGSM 565 markers and UGSM 567 discriminated 17.33% and 22.92% of varieties and somaclones evaluated, respectively. This discrimination may be due to the differential response of the primer pairs with the somaclones and parent varieties.

Both the two SSR markers generated multiple fragments sugarcane among ten somaclones and two parent varieties. The respective genetic diversitv or polymorphic information content (PIC) per marker of UGSM 565 and UGSM 567 was recorded as 0.64 and 0.69 for all loci across the ten somaclones and two parent varieties evaluated (Table 3). The primer pair UGSM 565 showed PIC value 0.64 while the marker UGSM 567 produced PIC value 0.69. The most polymorphic SSR marker was associated with highest number the of polymorphic bands detected. The primer pair UGSM 565 was most polymorphic marker across ten somaclones and two sugarcane varieties with PIC value of 0.64. The PIC values are dependent on genetic diversity of somaclones and varieties under study. According to Garland *et al*, (Garland, Lewin, Abedinia, Henry, & Blakeney, 1999) а high proportion of closely related genotypes would have effect of lowering PIC values. In this study. mean PIC value among ten somaclones and varieties was 0.67 two indicating a high level of variability present in varieties and somaclones based on two SSR primers. Comparable results were also reported by Corderio et al, (Corderio et al., 2000) in sugarcane where they used the SSR primers.

Genetic relationships based on UGSM 565 among ten somaclones along with their two parent varieties at the average distance of 4.95 showed two major clusters  $(C_1 \text{ and } C_2)$  presented in Figure 3. At linkage distance 4.00 the of cluster  $C_2$ produced sub-cluster SC1 and  $SC_2$ . Finally, sub-cluster  $SC_2$ produced sub-sub-cluster  $SSC_1$  and  $SSC_2$  at the linkage distance of 2.0. The major cluster  $C_1$  separated the sugarcane somaclone TC23-10(20) PEG from the other somaclones and the parent varieries. On the other hand, the major cluster C<sub>2</sub> separated the somaclone TC10-10(16) from other somaclones and the parent varieties. Based on UGSM 567. aenetic relationships among the ten somaclones along with their two parent varieties at the average distance of 5.5 showed two major clusters  $(C_1 \text{ and } C_2)$  presented in Figure 4. At the linkage distance of 1.00, the cluster  $C_1$  produced sub-cluster  $SC_1$ and  $SC_2$  and at the linkage distance 4.80, the  $C_2$ produced sub-cluster SC1 and SC<sub>2</sub>. Finally, sub-cluster SC<sub>2</sub> of the cluster C<sub>2</sub> produced sub-sub-cluster  $SSC_1$ and SSC<sub>2</sub> at the linkage distance of 1.0. The major cluster C<sub>1</sub> the sugarcane separated somaclone TC23-10(20) PEG from the other somaclones and the parent varieries. On the other hand, the major C<sub>2</sub> separated the cluster somaclone TC10-10(16) from other somaclones and the parent varieties. In both markers. results of DNA polymorphism of the ten somaclones and two sugarcane varieties prove that they bear the genetic

## Vol. XXXIII, No.01

diversity of somaclones TC23-10(20) PEG and TC10-10(16)from other investigated somaclones and varieties. Hence, it is clear from figure 3 and 4 that somaclones TC23-10(20) PEG and TC10-10(16) shown to be outliers in dendrogram and distantly related with rest somaclones based on of their genetic distances. The result was in partial agreement with findings of Shahnawaz (R.M.S, 2006) who analyzed DNA polymorphism of the four varieties/accessions and found that the variety Isd 16 was separated from the other varieties in a maior cluster while the remaining three were in another cluster. He also used variety Isd 20 having superior performances against biotic and abiotic stresses than the other varieties. It lied in the subcluster  $SC_1$ and was separated from other varieties at the linkage distance of 11.0.

### CONCLUSION

The results of the present investigation revealed that two SSR primers were able to detect or identify and classify ten sugarcane somaclones along with their parent varieties indicating genetic differences among sugarcane somaclones and their parent varieties. Therefore, detection of genetic variability among sugarcane somaclones should be continued in order to determine their genetic distances and relationships them using among microsatellite markers.

## Table-1Parameters of primers sequence of two sugarcane microsatellite primers from<br/>the International Sugarcane Microsatellite Consortium, NSW, Australia

| Primer Code | Sequence (5'-3')                          | G+C Content (%) |
|-------------|-------------------------------------------|-----------------|
| UGSM 565    | Forward: 5'-CAT AGC AAG CAC CAC CTC TC-3' | 55.00           |
|             | Reverse: 5'-TCT TCT TCT CGT CCA CCC-3'    | 55.56           |
| UGSM 567    | Forward: 5'-CTT CAT ACG CCA CCT TCT C-3'  | 52.63           |
|             | Reverse: 5'-CAA ATG TTC ACT CGC ATC A-3'  | 42.10           |

Table-2Microsatellite primers with corresponding bands scored, their size range,<br/>number of polymorphic bands, polymorphism and number of band per<br/>variety together with variety distinguished in two sugarcane varieties and ten<br/>somaclones

| Primer<br>Codes | Size<br>ranges<br>(bp) | Total<br>number of<br>band score | Number of<br>polymor-<br>phic<br>bands | Polymor-<br>phism<br>(%) | Number<br>of band<br>per<br>variety | Variety<br>distinguished<br>(%) |
|-----------------|------------------------|----------------------------------|----------------------------------------|--------------------------|-------------------------------------|---------------------------------|
| UGSM 565        | 80-650                 | 25                               | 4                                      | 16.00                    | 2.08                                | 17.33                           |
| UGSM 567        | 350-650                | 33                               | 2                                      | 6.06                     | 2.75                                | 22.92                           |
| Total           |                        | 58                               | 6                                      | -                        | -                                   | -                               |

#### Table-3Microsatellite primers with Polymorphism Information Content (PIC).

| Primer Codes | PIC(Polymorphism Information Content) |  |  |  |
|--------------|---------------------------------------|--|--|--|
| UGSM 565     | 0.64                                  |  |  |  |
| UGSM 567     | 0.69                                  |  |  |  |



## Figure-1 SSR profile of ten somaclones along with their two parent varieties based on Primer pair UGSM 565



## Fig. 2 SSR profile of ten somaclones along with two parent varieties of sugarcane based on primer pair UGSM 567



Fig.3 Tree Diagram for ten sugarcane somaclones and two varieties based on Unweighted Pair-group average Squared Euclidean distances using primer pair UGSM 565



### Fig.4 Tree Diagram for ten sugarcane somaclones and two varieties based on Unweighted Pair-group average Squared Euclidean distances using primer pair UGSM 567

### REFERENCES

A, B. (2000). Application of sugarcane microsatellites at SASEX. The Satellite 3, 1, p. 3.

Aljanabi, S., L. Forget, and A. Dookun, (1999). An improved and rapid protocol for the isolation of polysaccharide-and polyphenol-free sugarcane DNA. *Plant Molecular Biology Reporter*, *17*(3), 281-281.

Andersen, J. R., and T. Lübberstedt, (2003). Functional markers in plants. *Trends in plant science*, *8*(11), 554-560.

Corderio, G., G. Taylor, and R. Henry, (2000). Characterization of microsatellite markers from sugarcane (Saccharum sp.), a highly polyploidy species. *Plant Sci, 155*, 161-168.

Garland, S. H., L. Lewin, M. Abedinia, R. Henry, and A. Blakeney, (1999). The use of microsatellite polymorphisms for the identification of Australian breeding lines of rice (Oryza sativa L.). *Euphytica*, *108*(1), 53-63.

Jannoo, N., L. Forget, and A. Dookun, (2001). Contribution of microsatellites to sugarcane breeding program in Mauritius. *Proe. Int. Soc. Sugarcane Technol, 24*, 637-639.

Khan, I., A. Khatri, G. Nizamani, M. Siddiqui, and M. Khanzada, (2004). In-vitro Culture studies in sugarcane. *Pak J Biotech*, *1*, 6-10.

LaBorde, C., B. Legendre, K. Bischoff, K. Gravois, and T. Robert, (2008). Sugarcane Variety Identification Guide 2008. *Louisiana State University AgCenter Publication, Baton Rouge*.

Pan, Y.-B., G. Cordeiro, E. Richards, and R. Henry, (2003). Molecular genotyping of sugarcane clones with microsatellite DNA markers. *Maydica*, 48(4), 319-329.

Pan, Y., J. Miller, R. Schnell, E. Richard Jr, and Q. Wei, (2003). Application of microsatellite and RAPD fingerprints in Florida sugarcane variety program. *Plant and Animal Genome Abstract XI Abstract Book W*, 189, 43.

Pan, Y., B. Scheffler, and E. Richard Jr, (2007). High-throughput molecular genotyping of commercial sugarcane clones with microsatellite (SSR) markers. *Sugar Tech*, *9*(2-3), 176-181.

R. M. S, S. (2006). DNA Isolation, Quantification and Fingerprinting Using RAPD Markers of Sugarcane (Saccharum officinarum L.). *A thesis of Master's of Science (M. Sc.) in Biotechnology and Genetic Engineering Department of Islamic University, Kushtia, Bangladesh.* 

R. R, M. (2002). Genetic diversity in sugarcane (*Saccharum officinarum* L.) from the active germplasm collection of Philsurin based on coefficient of parcentage, morphological traits and DNA microsatellite markers.

Skinner, J. (1972). Description of sugarcane clones. III. Botanical description. *Proceedings of the International Society of Sugar Cane Technology*, *14*, 124-127.

Sneath, P. H., and R. R. Sokal, (1973). *Numerical taxonomy. The principles and practice of numerical classification*.

Yang, G., M. S. Maroof, C. Xu, Q. Zhang, and R. Biyashev, (1994). Comparative analysis of microsatellite DNA polymorphism in landraces and cultivars of rice. *Molecular and General Genetics MGG*, 245(2), 187-194.