ENERGY AND EXERGY ANALYSIS OF SHAKARGANJ LIMITED JHANG THERMAL POWER PLANT

Tanveer UI Islam

Shift Engineer Mechanical, Shakarganj Ltd ,Jhang Post Graduation in Mechanical Engineering student, Department of Mechanical Engineering, University of Engineering and Technology Taxila

ABSTRACT

Exergy analysis has sparked interest within the scientific community to require a more in-depth check up on the energy conversation devices. Exergy analysis gives entropy generation, irreversibility percentage exergy loss and second law efficiency. The exergy loss or irreversibility is the maximum at boiler. Thus to know about actual flow of exergy in the cycle thermodynamic analysis based on second law is desirable. In this report exergy analysis of operating condition of boiler has been carried out based on mass and exergy balance. The power plant boiler was simulated based on the measured operating data and the thermodynamic states of the plant components. It has been found that maximum exergy destruction occurs due to combustion process. Exergy efficiency of boiler according to second law analysis and the exergy analysis of back pressure steam turbine is performed. It is found that at minimum flue gas outlet temperature second law efficiency is the maximum.

INTRODUCTION

Steam Boilers

Boiler #	Make	MCR T/H	NCR T/H
Boiler # 1	Babcock & Wilcox	40	35
Boiler # 2	Babcock & Wilcox	80	72
Boiler # 3	Yoshimine (IFL)	80	72
Boiler # 4	Yoshimine (IFL)	80	72
Boiler # 5	Yoshimine (Brother)	80	80

Pressure 25 bar & Temperature 350 °C

Power House Steam Turbines:

Pressure 25 bar & Temperature 335 °C

TG-Set #	Make	Design Exhaust Pressure & Temperature	Specific Steam Consumption Kg/KWH	Capacity
TG-Set – I	Qingdao China	Back Pressure 1.5 bar, Temp. 160 ^o C	10.5	6 MW
TG-Set – II	Qingdao China	Back Pressure 3 bar, Temp. 185 ^o C	12.6	6 MW
TG-Set – III	KKK Germany	Back Pressure 1 bar, Temp. 160 ^o C	14	2 MW

Steam Turbine Energy & Exergy Analysis:	Èo = (ṁext x hext)+(ṁexh x hexh)	Ėout) Exergy Input : Ψin = ṁs (hs -T0ss)
Energy input is equal to product of mass of steam into turbine and its enthalpy at entry: Ėi = m̀i x hì	energy in steam at entry to turbine minus that at exit. W.D = $\dot{E}i - \dot{E}o$	2. Exergy Out : Ψout = mext (hext-T0Sext) + mexh (hexh-T0Sexh)
Energy output is sum of heat extracted and heat exhausted.	Energy Efficiency (1st Law efficiency) of Turbine : η I = (Actual Power Develop by Turbine Shaft) / (Ėin -	Exergy Destruction in Turbine: Ψdes= Ψin - Ψout - Ψpower

Inlet Conditions:

	C250#1	mf in Steam	Pressure	Temperature
	Case#1	kg/s	Кра	С
	1	3.69	2400.00	341.00
Impulse Steam	2	3.72	2400.00	346.00
Turbine TG-2 - 02 MW Back Pressure- 180 Kpa	3	3.81	2400.00	342.00
	4	3.89	2400.00	341.00
	5	4.03	2400.00	346.00
	6	4.25	2400.00	346.00
	7	4.08	2400.00	346.00
	8	4.03	2400.00	347.00

Enthalpy	Entropy	To (38 C)	Energy in	Exergy In
KJ/kg	Kj/kg.k	С	KW	KW
3108.58	6.83	311.00	11484.48	3636.33
3120.02	6.85	311.00	11613.41	3684.78
3110.87	6.83	311.00	11838.59	3750.01
3108.58	6.83	311.00	12088.92	3827.72
3120.02	6.85	311.00	12566.75	3987.26
3120.02	6.85	311.00	13260.09	4207.25
3120.02	6.85	311.00	12740.08	4042.26
3122.30	6.85	311.00	12575.94	3991.84

Outlet Condition

mf-out	Pressure	Temperature
kg/s	Кра	С
3.69	180.00	190.00
3.72	180.00	174.00
3.81	180.00	169.00
3.89	180.00	168.00
4.03	180.00	172.00
4.25	180.00	171.00
4.08	180.00	171.00
4.03	180.00	172.00

Enthalpy	Entropy	Energy out	Exergy out
KJ/kg	Kj/kg.k	KW	KW
2851.65	7.52	10535.27	1900.30
2819.42	7.44	10494.50	1876.60
2809.31	7.42	10690.97	1907.05
2807.28	7.42	10917.20	1946.48
2815.38	7.44	11339.71	2025.72
2813.35	7.43	11956.75	2134.90
2813.35	7.43	11487.86	2051.18
2815.38	7.44	11339.71	2025.72

Exergy Analysis:

Work Dono	Generator Power	1st Law	Exergy	2nd Law
WOR Done	Output Efficiency		Destruction	Efficiency
KW	KW	%	KW	%
949.21	930.00	97.98	8634.96	16.80
1118.91	960.00	85.80	8617.90	17.26
1147.62	980.00	85.39	8783.92	17.32
1171.72	990.00	84.49	8970.72	17.15
1227.04	1020.00	83.13	9313.99	16.96
1303.33	1080.00	82.86	9821.85	17.03
1252.22	1100.00	87.84	9436.68	18.05
1236.23	1050.00	84.94	9313.99	17.45

1. Boiler Energy and Exergy Analysis Composition of Bagasse

Composition of bagasse.									
	C% H% O2% Ash % Moisture Total %								
Composition of dry bagasse i.e 0%									
moisture	47	6.5	44	2.5	0	100			
Composition of wet Bagasse with									
50% moisture	23.5	3.25	22	1.25	50	100			
Composition of wet Bagasse with									
48% moisture	24.44	3.38	22.88	1.3	48	100			

Composition of dry

bagasse is,

С	= 47 %
H2	= 6.5 %
O2	= 44 %
Ash	= 2.5 %
Total	= 100 %

And Composition of wet Bagasse with 50% moisture

is, $C = 0.47 \times 50 = 23.50 \%$ $H2 = 0.065 \times 50 = 3.25 \%$ $O2 = 0.44 \times 50 = 22 \%$ $Ash = 0.025 \times 50 = 1.25 \%$ Moisture= 50 %. Total = 100 %

Bagasse combustion calculation: O2 required for complete combustion per Kg of Bagasse

C + O2 = CO2 12 + 32 = 44 (32/12) x 0.2256 = 0.6016Kg 2H2 + O2 = 2H2O 4 + 32 = 36 (32/4) x0.0312 = 0.2496Total O2 required. =0.6016 + 0.2496 - 0.2112 = 0.64 Kg/Kg

Air required for Bagasse

Air Required for complete comb = (100/23)x 0.64 = 2.783 Kg/Kg Excess air coefficient (RA) =1.45 Total Air Supply =2.783x 1.45 = 4.035 Kg/Kg

Product of combustion per Kg of Bagasse.

CO2. (44/12) x0.2256 = 0.8272 Kg

H2O. (36/4) x 0.0312	=	Gas Produced by 1 Kg of	H2O = (0.54/4.7662) x 100=
0.2808 +0.52 = 0.54		Bagasse.	11.3 %
O2. 4.035 x 0.23 -0.64 0.28805 Kg N2. 4.035x0.77 = 3.10695 Kg	=	0.8272+0.54+0.28805+3.106 95 = 4.7662 kg/kg Composition of gas by weight CO2 = (0.8272/4.7662)x100= 17.4 %	O2= (0.28805/4.7662)x100= 6.0 % N2 = (3.10695/4.7662) x 100 = 65.3 %

O2 required for complete combustion per Kg of Bagasse						
% O2 % O2 O2 in Required Air Req Total Excess						
Bagasse Quality	For CO2	For H2O	fuel	O2(kg/kg)	(kg/kg)	Air (kg/kg)
Total O2 Required for						
52% Moisture Bagasse	0.602	0.250	0.2112	0.640	2.783	4.0347826

Product of Combustion						
	Moisture					Gas Produced/kg
	%	CO2	H2O	O2	N2	of Bagasse
52% Moisture Bagasse	52	0.8272	0.8008	0.288	3.107	5.022782609

Boiler Efficiency Calculation:

A simple method to measure the efficiency is to calculate the steam fuel ratio, i.e. is to measure the steam generated by unit mass of fuel. Steam fuel ratio, is directly proportional to boiler efficiency. Following ratios can be obtained for different fuels. Coal 5.7 Rice Husk 4.0 Bagasse 2.2

Boiler Efficiency=

This method is known as direct method which is based on simply that efficiency is equal to output divided by input. The other method is the indirect method of calculating boiler efficiency.

To account the boiler losses a more better and precise formula for efficiency calculation is given below:

	η=	x100
Whe	re,	
Μv	= Heat f	transfer to

steam per kg of bagasse burnt NCV =Net calorific value Also, $Mv = (N.C.V-Q).\alpha.\beta.y$ Where Q = Sensible heat loss in flue gas $\alpha.\beta.y = \text{Co-efficient of x-tics}$ of combustion efficiency = Co-efficient α representing heat loss due to un-burnt solids. = Co-efficient to ß account for heat losses by radiation. = Co-efficient of Y incomplete combustion.

For spreader stoker furnaces, its normal value α is taken as 0.975.

This value varies from 0.95 to 0.99 for more or less efficient lagging. Its value is taken as β 0.97.

Its value is taken as y 0.95

Whereas, Q= [(1-M) x (1.4RA-0.13) + 0.5] t Where,

M = % Moisture in Bagasse RA =Ratio of excess Air t =Temperature of Flue gases

Here RA is ratio of excess air usually taken 1.45 for bagasse.

A better estimation of efficiency can directly be found by calculating the highest loss in Boiler which is sensible heat loss in flue gases in Kcal/Kg of Bagasse. The calorific value of bagasse

in relationship to moisture and Pol is given below,

Bagasse Quality	Net Calorific Value (kcal/kg)	Moisture	Pol
52% Moisture Bagasse with Pol 2.0 %	1704	52	2
50% Moisture Bagasse with Pol 2.0 %	1801	50	2
48% Moisture Bagasse with Pol 2.0 %	1898	48	2

	Loss of Sensible Heat Q (Kcal/kg of bagasse) burnt				
Flue Gas outlet temperature Tout (C)	52% Moisture Bagasse with Pol 2.0 %				
	NCV 1704 kcal/kg				
180	241.99				
190	255.44				
200	268.88				
210	282.32				
220	295.77				
230	309.21				
240	322.66				
250	336.10				
260	349.54				
270	362.99				

After calculation of sensible loss, heat transfer to steam can easily be found by,

	Mv , Heat transfer to steam/ kg of Bagasse burnt				
Flue Gas outlet temperature Tout (C)	52% Moisture Bagasse with Pol 2.0 %				
	NCV 1704 kcal/kg				
180	1313.56				
190	1301.48				
200	1289.40				
210	1277.32				
220	1265.24				
230	1253.16				
240	1241.09				
250	1229.01				
260	1216.93				
270	1204.85				

PSJ April-June, 2020

efficiency Bagasse is calculated by: using the equation:

> η II = x100

In indirect method the amount of different losses is worked out or measured and finally the summation of losses is subtracted from 100. Both methods are equally good and recognized for calculating boiler efficiency. In second method losses are calculated, when every loss is known one can find that which loss is major contributor for efficiency loss and can take the corrective measure to reduce it. One cans decide which loss is less and can be ignored. On focusing the important one boiler efficiency can be improved.

	Boller 2 rd Law Efficiency				
Flue Gas outlet temperature Tout (C)	52% Moisture Bagasse with Pol 2.0 %				
	NCV 1704 kcal/kg				
180	77.09				
190	76.38				
200	75.67				
210	74.96				
220	74.25				
230	73.54				
240	72.83				
250	72.12				
260	71.42				
270	70.71				

Results and Conclusion: installing retrofits, we can optimize the boiler efficiency A detailed mathematical model has been established and can save tons of fuel. to calculate the effect of below mentioned parameters Various retrofits are used for on the efficiency of Bagasse specific purpose like **Bagasse Moisture** fired boilers. **Bagasse Moisture** Could be reduced by optimize milling and Bagasse Bagasse Pol dryer Flue Gas Temperature Feed water Temperature Bagasse Pol Could be reduced by Retrofitting is used to alter the optimize milling operation above mentioned parameters Flue Gas Temperatur

Feed water TemperatureCould be

increased by economizer

After detailed calculations the relationship of bagasse consumption for steam generation has been found as per below table. For constant steam generation rate at isobaric and isothermal steam generation, bagasse consumption is variable and fully dependent on following, Feed Water temperature Fuel heating value Flue cases outlet temperature

consumption. Thus by				Re-heater a	nd Bagasse drye	er Flue gase	Flue gases outlet temperature	
At 350 C and 25 Bar-a Steam and 110 C Feed water Temperature								
52% Moisture Bagasse with Pol 2.0 %								
m(s)	h(s)	h(w)	N.C.V	Flue Gas	Efficione 06	Qty of Fuel	Steam/Bagasse	
Kg	Kj/kg	kj/kg	kj/kg	Tout (C)	Enciency %	(kg)	Ratio (kg/kg)	
80000	3127	463	7130	180	77.08681706	38775.24618	2.063171943	
80000	3127	463	7130	190	76.37795967	39135.11596	2.044199897	
80000	3127	463	7130	200	75.66910229	39501.72816	2.02522785	
80000	3127	463	7130	210	74.9602449	39875.27405	2.006255804	

Could be reduced by utilizing

economizer. Air Preheater.

the available heat by

which directly influence the

boiler operating efficiency

which is linked to fuel

consumption. Thus by

80000	3127	463	7130	220	74.25138752	40255.95223	1.987283758
80000	3127	463	7130	230	73.54253013	40643.96891	1.968311711
80000	3127	463	7130	240	72.83367275	41039.53839	1.949339665
80000	3127	463	7130	250	72.12481536	41442.88333	1.930367618
80000	3127	463	7130	260	71.41595798	41854.23529	1.911395572
80000	3127	463	7130	270	70.70710059	42273.83507	1.892423526

Bibliography

Books

1) Cengel, a. yunus, *Heat and Mass Transfer Fundamentals & Applications*, 5th Edition, McGraw-Hill Education, New York, 2015

Journals

1) Mr.Priyank Dave, Mr. Fenil Desai, Mr. Hitesh Tailor, *Energy Conservation in Bagasse Fired Boiler*, International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169 Volume: 2 Issue: 9

2) A. R. Esmaeili Sany, M. H. Saidi, J. Neyestani, *Experimental Prediction of Nusselt Number and Coolant Heat Transfer Coefficient in Compact Heat Exchanger Performed with* ϵ -NTU Method, The Journal of Engine Research/Vol. 18 / Spring 2010, Iran, March, 9

3) Dr. M K Chopra, Ramjee Singh Prajapati, *Thermal performance analysis of cross-flow unmixed unmixed heat exchanger by the variation of inlet condition of hot fluid*, International Refereed Journal of Engineering and Science (IRJES volume 3, India, January, 3

4) U.C. Upadhiaya, Bagasse as a fuel, Int. Sugar J., 1991, vol. 93, no. 1111, pp. 132-138

5) Luiz E.C. Maranhao, Bagasse drying, Paper presented for the ISSCT combined factory/energy workshop, 1994, pp. 1/105-1/117